MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2019 Calculator-free

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

Section One: Calculator-free

(50 Marks)

(2 marks)

Question 1(a)

Solution	
Let $f(x) = xe^{3x}$	
$f'(x) = e^{3x} + x3e^{3x} = e^{3x} + 3xe^{3x}$	
Mathematical behaviours	Mark
applies product rule	1
differentiates exponential correctly	1

Question 1(b)

	Solution	
$\frac{d}{dx}$	$\frac{1}{x}\left(\frac{\cos x}{x^3}\right) = \frac{x^3\left(-\sin x\right) - \cos x\left(3x^2\right)}{\left(x^3\right)^2} = \frac{-x^2\left(x\sin x + 3\cos x\right)}{x^6} = -\frac{\left(x\sin x + 3\cos x\right)}{x^4}$	$\overline{S(x)}$
	Mathematical behaviours	Marks
•	applies quotient rule	1
•	differentiates cos x correctly	1
•	simplifies result	1

Question 1(c)

Solution	
$g(u) = \sqrt{u} \Longrightarrow \frac{dg}{du} = \frac{1}{2}u^{\frac{-1}{2}} \qquad \qquad u = 2 - 3x^2 \Longrightarrow \frac{du}{dx} = -6x$	
$\Rightarrow \frac{dg}{dx} = \frac{1}{2}u^{\frac{-1}{2}} \times -6x = \frac{-3x}{\sqrt{2-3x^2}}$	
Mathematical behaviours	Marks
• states $\frac{dg}{du}$	1
• states $\frac{du}{dx}$	1
• states $\frac{dg}{dx}$ in terms of <i>x</i> .	1

Question 1(d)

Solution	
$x(t) = 3\sin 2t \Longrightarrow v(t) = 3 \times 2\cos 2t$	
$v(t) = 0 \Longrightarrow \cos 2t = 0$	
$ie \ 2t = \frac{\pi}{2} \Longrightarrow t = \frac{\pi}{4}s$	
Mathematical behaviours	Marks
• differentiates to obtain v(t)	1
• equates $v(t) = 0$	1
• determines <i>t</i> value	1

(3 marks)

(3 marks)

(3 marks)

2

Question 2 (a)

(4 marks)

Question 2(b)

(1 mark)

Question 3

(4 marks)

Solution	
Area = $\int_{0}^{2\pi} [\sin x - x(x - 2\pi)] dx$ = $\int_{0}^{2\pi} (\sin x - x^2 + 2\pi x) dx$ = $\left[-\cos x - \frac{x^3}{3} + \pi x^2 \right]_{0}^{2\pi}$ = $\left[-\cos 2\pi - \frac{(2\pi)^3}{3} + \pi (2\pi)^2 \right] - [-\cos 0]$ = $-1 - \frac{8\pi^3}{3} + 4\pi^3 + 1$ = $\frac{4\pi^3}{3}$	2π
Mathematical behaviours	Marks
 states a correct expression using integrals to determine the area 	1
 anti-differentiates each part correctly 	1
 substitutes in limits of integration 	1
evaluates result	1

Question 4(a)

(2 marks)

Solution	
$\int \left(2e^{2x} - \frac{3}{\sqrt{x}} \right) dx = \int \left(2e^{2x} - 3x^{-\frac{1}{2}} \right) dx$	
$=2\frac{e^{2x}}{2}-3\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$	
$=e^{2x}-6\sqrt{x}+c$	
Mathematical behaviours	Marks
anti-differentiates the exponential function correctly	1
anti-differentiates the square root function correctly	1

Question 4(b)

(2 marks)

Solution	
$\int_{0}^{1} (3-2x)^2 dx$	
$= \left[\frac{(3-2x)^3}{3\times(-2)}\right]_0^1$	
$=\frac{-1}{6}(1^3-3^3)$	
26	
$=\frac{1}{6}$	
13	
$=\frac{15}{2}$	
3	•
Mathematical behaviours	Marks
aniti-differentiates correctly	1
 substitutes limits of integration and evaluates 	1

Question 4(c)

(2 marks)

Solution	
$F(x) = \int_{x}^{1} \frac{dt}{1 + \sqrt{1 - t}}$	
$= -\int_{1}^{x} \frac{dt}{1+\sqrt{1-t}}$	
$\therefore F'(x) = -\frac{1}{1+\sqrt{1-x}}$	
Mathematical behaviours	Marks
• uses the relationship $\int_{x}^{1} \frac{dt}{1+\sqrt{1-t}} = -\int_{1}^{x} \frac{dt}{1+\sqrt{1-t}}$	1
applies Fundamental Theorem of Calculus	1

Question 4(d)

(3 marks)

Solution	
$\int_{-m}^{m} \left(m^3 - x^3\right) dx = 1250$	
$\left[m^3 x - \frac{x^4}{4}\right]_{-m}^m = 1250$	
$\left[m^{4} - \frac{m^{4}}{4}\right] - \left[-m^{4} - \frac{m^{4}}{4}\right] = 1250$	
$\frac{3m^4}{4} + \frac{5m^4}{4} = 1250$	
$\frac{8m^4}{4} = 1250$	
$2m^4 = 1250$	
$m^4 = 625$	
$m = \pm 5$	
Mathematical behaviours	Marks
anti-differentiates integral correctly	1
 substitutes in limits of integration correctly and simplifies to obtain correct expression on the LHS 	1
• determines correct answers for <i>m</i> .	1

determines correct answers for m. •

Question 5(a)

(3 marks)

(3 marks)

	Solution	
Be	ernoulli distribution with $\mu = \frac{1}{36}$, $\sigma^2 = \frac{1}{36} \times \frac{35}{36} = \frac{35}{36^2}$	
	Mathematical behaviours	Marks
٠	states Bernoulli	1
•	states mean	1
•	states variance	1

Question 5(b)

	Solution		
Th	This represents a Binomial with $n = 15$ and $p = \frac{1}{36}$.		
	Mathematical behaviours	Marks	
٠	states Binomial	1	
•	states n	1	
•	states p	1	

Question 5(c)

Solution	
$W \sim Bin\left(15, \frac{1}{36}\right)$	
$P(W=1) = {}^{15}C_1 \left(\frac{1}{36}\right)^1 \left(\frac{35}{36}\right)^{14} = 15 \left(\frac{1}{36}\right)^1 \left(\frac{35}{36}\right)^{14}$	
Mathematical behaviours	Marks
states correct expression	1

Question 5(d)

(3 marks)

Question 6(a)

(1 mark)

Solution	. ,
(i) Under-estimated Area = $\left(\frac{\pi}{6} \times \frac{1}{2}\right) + \left(\frac{\pi}{6} \times \frac{\sqrt{3}}{2}\right)$	
$=\frac{\pi}{6}\left(\frac{1+\sqrt{3}}{2}\right)$	
(ii) Over-estimated Area = $\left(\frac{\pi}{6} \times \frac{1}{2}\right) + \left(\frac{\pi}{6} \times \frac{\sqrt{3}}{2}\right) + \left(\frac{\pi}{6} \times 1\right)$	
$=\frac{\pi}{6}\left(\frac{1}{2} + \frac{\sqrt{3}}{2} + 1\right)$	
$=\frac{\pi}{6}\left(\frac{3+\sqrt{3}}{2}\right)$	
Mathematical behaviours	Marks
 (i) states the sum of the area of the two rectangles and simplifies correctly (ii) 	1
 states the sum of the area of the three rectangles and simplifies correctly 	1

(1 mark)

Question 6(b)

(2 marks)

Solution	, , , , , , , , , , , , , , , , , , ,
Using trapeziums is equivalent to averaging the results from part (a)	
π	
i.e. Estimated area under $f(x) = \sin x$ from $x = 0$ to $x = \frac{\pi}{2}$ is	
$\left \frac{\pi}{2}\left(\frac{3+\sqrt{3}}{2}\right)+\frac{\pi}{2}\left(\frac{1+\sqrt{3}}{2}\right)\right \div 2$	
$\begin{bmatrix} 6 \\ 2 \end{bmatrix}^{1} 6 \begin{bmatrix} 2 \\ 2 \end{bmatrix}^{1} 2$	
$\begin{bmatrix} \pi (4 & 2\sqrt{3}) \end{bmatrix}$	
$= \left \frac{\pi}{6} \right \frac{1}{2} + \frac{-\sqrt{2}}{2} \right + \frac{1}{2}$	
$= \left[\frac{\pi}{6}\left(2+\sqrt{3}\right)\right] \div 2$	
$\pi(2+\sqrt{3})$	
$=\frac{1}{6}\left(\frac{1}{2}\right)$	
Mathematical behaviours	Marks
determines the average of the two areas obtained in part (a)	1
simplifies to deduce the required result	1

Question 7(a)

(1 mark)

Solution			
	$y = \sin^2 x$		
	$\frac{dy}{dx} = 2\sin x \cos x$		
	Mathematical behaviours	Mark	
•	States correct answer	1	

Question 7(b)

Question 7(b)	(3 marks)
Solution	
$y = \sin^2 x$	
$\frac{dy}{dx} = 2\sin x \cos x$	
$\int \frac{dy}{dx} dx = \int 2\sin x \cos x dx$	
$y = \int 2\sin x \cos x dx + c$	
$\sin^2 x = \int 2\sin x \cos x dx + c$	
$\int \sin x \cos x dx = \frac{1}{2} \sin^2 x + c$	
Mathematical behaviours	Marks
integrates both sides of equation	1
applies fundamental theorem	1
rearranges to get required result	1

Question 7(c)	(3 marks)
Solution	
$\int_{0}^{\frac{\pi}{6}} (\sin x \cos x + 2) dx = \left[\frac{1}{2}\sin^{2} x + 2x\right]_{0}^{\frac{\pi}{6}}$	
$=\frac{1}{2}\left[\left(\frac{1}{2}\right)^2 - 0^2\right] + 2\left[\frac{\pi}{6} - 0\right]$	
$=\frac{1}{8}+\frac{\pi}{3}$	
Mathematical behaviours	Marks
• recognises $\sin^2 x$ term is to be involved	1
 states correct integral and bounds of integration 	1
 substitutes bounds of integration and simplifies 	1

9